%I #19 Sep 19 2016 09:30:37
%S 2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,
%T 3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,
%U 5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5
%N A weaver's answer to the question "What comes next after 2,3,5?".
%C a(n+1) - a(n) = A186809(n). - _Reinhard Zumkeller_, Oct 19 2015
%H E. R. Berlekamp, <a href="/A257113/a257113.pdf">A contribution to mathematical psychometrics</a>, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1).
%t t = Prime@ Range@ 3; Flatten@ Table[{t, Reverse@ t}, {16}] (* _Michael De Vlieger_, Oct 20 2015 *)
%t PadRight[{},120,{2,3,5,5,3,2}] (* or *) LinearRecurrence[{1,-1,1,-1,1},{2,3,5,5,3},120] (* _Harvey P. Dale_, Sep 19 2016 *)
%o (Haskell)
%o a262565 n = a262565_list !! (n-1)
%o a262565_list = cycle [2,3,5,5,3,2] -- _Reinhard Zumkeller_, Oct 19 2015
%Y Cf. A262564, A186809.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Oct 19 2015
%E Typo in link fixed by _Zak Seidov_, Oct 20 2015