login
A weaver's answer to the question "What comes next after 2,3,5?".
3

%I #19 Sep 19 2016 09:30:37

%S 2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,

%T 3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,

%U 5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5,3,2,2,3,5,5

%N A weaver's answer to the question "What comes next after 2,3,5?".

%C a(n+1) - a(n) = A186809(n). - _Reinhard Zumkeller_, Oct 19 2015

%H E. R. Berlekamp, <a href="/A257113/a257113.pdf">A contribution to mathematical psychometrics</a>, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1).

%t t = Prime@ Range@ 3; Flatten@ Table[{t, Reverse@ t}, {16}] (* _Michael De Vlieger_, Oct 20 2015 *)

%t PadRight[{},120,{2,3,5,5,3,2}] (* or *) LinearRecurrence[{1,-1,1,-1,1},{2,3,5,5,3},120] (* _Harvey P. Dale_, Sep 19 2016 *)

%o (Haskell)

%o a262565 n = a262565_list !! (n-1)

%o a262565_list = cycle [2,3,5,5,3,2] -- _Reinhard Zumkeller_, Oct 19 2015

%Y Cf. A262564, A186809.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Oct 19 2015

%E Typo in link fixed by _Zak Seidov_, Oct 20 2015