login
A262444
Number of 3-colored integer partitions such that no adjacent parts have the same color.
2
1, 3, 9, 21, 51, 111, 249, 525, 1119, 2319, 4809, 9825, 20079, 40671, 82341, 165945, 334191, 671307, 1347861, 2702385, 5416395, 10847787, 21720981, 43474869, 87004875, 174081051, 348279777, 696712749, 1393674603, 2787673767, 5575871457, 11152425093, 22305942039
OFFSET
0,2
LINKS
Ran Pan, A note on enumerating colored integer partitions, arXiv:1509.06107 [math.CO], 2015.
FORMULA
G.f.: -1/2 + (3/2)*Product_{k>=1} 1/(1-2*x^k).
a(n) = floor(3/2*A070933(n)).
a(n) = Sum_{k=0..3} 6/k! * A262495(n,3-k). - Alois P. Heinz, Sep 24 2015
EXAMPLE
a(2) = 9 because there are two integer partitions of 2: [2], [1,1] and there are three ways to color [2] and 3 X 2 = 6 ways to color [1,1].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
end:
a:= n-> floor(b(n$2)/2*3):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 23 2015
MATHEMATICA
Rest[CoefficientList[Series[3/2 Product[1/(1 - 2 x^k), {k, 1, 35}], {x, 0, 35}], x]] (* Vincenzo Librandi, Sep 23 2015 *)
CROSSREFS
Sequence in context: A105544 A119917 A111209 * A372559 A109755 A348403
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Sep 23 2015
STATUS
approved