login
Expansion of Product_{k>=1} (1-x^(5*k))/(1-x^(2*k)).
2

%I #32 Mar 22 2018 06:01:44

%S 1,0,1,0,2,-1,3,-1,5,-2,6,-3,10,-5,13,-7,19,-11,25,-15,35,-22,45,-30,

%T 62,-41,79,-55,105,-75,134,-98,175,-130,220,-168,284,-219,355,-280,

%U 451,-360,561,-455,705,-578,870,-725,1085,-910,1331,-1132,1644,-1410

%N Expansion of Product_{k>=1} (1-x^(5*k))/(1-x^(2*k)).

%C In general, if m >= 1 and g.f. = Product_{k>=1} (1-x^((2*m+1)*k))/(1-x^(2*k)), then a(n) ~ (-1)^n * exp(Pi*sqrt((4*m+1)*n/(6*(2*m+1)))) * (4*m+1)^(1/4) / (2^(7/4) * 3^(1/4) * (2*m+1)^(3/4) * n^(3/4)).

%H Vaclav Kotesovec, <a href="/A262364/b262364.txt">Table of n, a(n) for n = 0..5000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], 2015-2016, p. 15.

%F a(n) ~ (-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n/10)) / (2^(7/4) * 5^(3/4) * n^(3/4)).

%e G.f. = 1 + x^2 + 2*x^4 - x^5 + 3*x^6 - x^7 + 5*x^8 - 2*x^9 + ...

%t nmax = 60; CoefficientList[Series[Product[(1-x^(5*k))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x]

%t CoefficientList[Series[QPochhammer[x^5]/QPochhammer[x^2], {x, 0, 60}], x]

%o (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^5)/eta(q^2))} \\ _Altug Alkan_, Mar 21 2018

%Y Cf. A035959, A147783, A262346.

%K sign

%O 0,5

%A _Vaclav Kotesovec_, Sep 23 2015