OFFSET
1,1
COMMENTS
Gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see the references below.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..250
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 2014-2016.
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
EXAMPLE
Denominators of 1/4, 5/72, 1/32, 251/14400, 19/1728, 19087/2540160, ...
MAPLE
a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else
1 - add(r(k)/(n-k+1), k=0..n-1) fi end: denom(r(n)/(n*(n+1))) end:
seq(a(n), n=1..20); # Peter Luschny, Apr 19 2018
MATHEMATICA
g[n_] := Sum[Abs[StirlingS1[n, l]]/(l + 1), {l, 1, n}]/(n*(n + 1)!); a[n_] := Denominator[g[n]]; Table[a[n], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Iaroslav V. Blagouchine, Sep 15 2015
STATUS
approved