login
A262140
The first of nine consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eight consecutive positive integers.
2
20, 136, 812, 4752, 27716, 161560, 941660, 5488416, 31988852, 186444712, 1086679436, 6333631920, 36915112100, 215157040696, 1254027132092, 7309005751872, 42600007379156, 248291038523080, 1447146223759340, 8434586304032976, 49160371600438532
OFFSET
1,1
COMMENTS
For the first of the corresponding eight consecutive positive integers, see A262139.
FORMULA
a(n) = 4*A076708(n+1).
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>3.
G.f.: 4*x*(x-5) / ((x-1)*(x^2-6*x+1)).
EXAMPLE
20 is in the sequence because 20^2 + ... + 28^2 = 5244 = 22^2 + ... + 29^2.
PROG
(PARI) Vec(4*x*(x-5)/((x-1)*(x^2-6*x+1)) + O(x^40))
CROSSREFS
Sequence in context: A085284 A105573 A144965 * A140301 A264315 A264308
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 12 2015
STATUS
approved