%I
%S 1,2,5,8,11,23,26,59,83,89,116,1103,1568,5768,13376,17810,18614,66209,
%T 167933,188318
%N Numbers m such that (4^m + 17) / 3 is prime.
%C After 1, m is of the form 3*k+2. In fact, for m = 3*k or 3*k+1, 4^n+17 is divisible by 9 and 7, respectively. [_Bruno Berselli_, Aug 26 2015]
%C a(21) > 300000.  _Robert Price_, Apr 04 2017
%e 2 is in the sequence because (4^2+17)/3 = 11 is prime.
%e 5 is in the sequence because (4^5+17)/3 = 347 is prime.
%t Select[Range[0, 5000], PrimeQ[(4^# + 17)/3] &]
%o (MAGMA) [n: n in [0..1000]  IsPrime((4^n+17) div 3)];
%o (PARI) for(n=1, 1e3, if(isprime((4^n+17)/3), print1(n", "))) \\ _Altug Alkan_, Sep 14 2015
%Y Cf. similar sequences listed in A261539.
%K nonn,more
%O 1,2
%A _Vincenzo Librandi_, Aug 26 2015
%E a(14)a(15) from _Vincenzo Librandi_, Sep 14 2015
%E a(16)a(20) from _Robert Price_, Feb 01 2017
