login
Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).
1

%I #85 Jan 24 2019 03:37:20

%S 1,1,1,1,1,1,2,1,1,3,3,1,1,5,10,10,5,1,1,8,28,56,70,56,28,8,1,1,13,78,

%T 286,715,1287,1716,1716,1287,715,286,78,13,1,1,21,210,1330,5985,20349,

%U 54264,116280,203490,293930,352716,352716,293930,203490,116280,54264,20349,5985,1330,210,21,1

%N Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).

%C Subsequence of A007318.

%H Jean-François Alcover, <a href="/A261507/b261507.txt">Table of n, a(n) for n = 0..388</a> (corrected by _N. J. A. Sloane_, Jan 18 2019)

%F T(n, k) = binomial(fibonacci(n), k).

%F T(n, 1) = fibonacci(n) = A000045(n).

%F T(n, 2) = A191797(n) for n>3.

%e 1,

%e 1, 1,

%e 1, 1,

%e 1, 2, 1,

%e 1, 3, 3, 1,

%e 1, 5, 10, 10, 5, 1,

%e 1, 8, 28, 56, 70, 56, 28, 8, 1,

%e 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1

%t Table[Binomial[Fibonacci[n], k], {n, 0, 8}, {k, 0, Fibonacci[n]}]//Flatten (* _Jean-François Alcover_, Nov 12 2015*)

%o (PARI) v = vector(101,j,fibonacci(j)); i=0; n=0; while(n<100, for(k=0, n, print1(binomial(n, k), ", ","")); print(); i=i+1; n=v[i] ;)

%Y Cf. A000045, A007318.

%Y Cf. A036355, A037027, A228074, A162741, A034871, A034870, A191797.

%K less,nonn,tabf

%O 0,7

%A _Maghraoui Abdelkader_, Aug 22 2015