login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261483
Number of set partitions of [n] into exactly seven parts such that no part contains two elements with a circular distance less than three.
2
1, 12, 102, 720, 4587, 27326, 155571, 858023, 4623388, 24488768, 128053146, 663054996, 3407483161, 17409523182, 88545747922, 448749879028, 2267921345677, 11436557773522, 57571373075875, 289413549581585, 1453301573317896, 7291464343122268, 36557211011698580
OFFSET
7,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-25,70,-299,405,-746,2795,-19,3758,-7633,-12165,-17481,-9272,11804,14400,14400).
FORMULA
G.f.: -(120*x^9 +120*x^8 +71*x^7 +296*x^6 +86*x^5 +116*x^4 +32*x^3 +19*x^2 +3*x+1) *x^7 / ((x-1) *(5*x-1) *(3*x-1) *(2*x-1) *(4*x-1) *(x+1) *(x^2+x+1) *(5*x^2+x+1) *(3*x^2+x+1) *(4*x^2+x+1) *(2*x^2+x+1)).
EXAMPLE
a(7) = 1: 1|2|3|4|5|6|7.
a(8) = 12: 14|2|3|5|6|7|8, 15|2|3|4|6|7|8, 1|25|3|4|6|7|8, 16|2|3|4|5|7|8, 1|26|3|4|5|7|8, 1|2|36|4|5|7|8, 1|27|3|4|5|6|8, 1|2|37|4|5|6|8, 1|2|3|47|5|6|8, 1|2|38|4|5|6|7, 1|2|3|48|5|6|7, 1|2|3|4|58|6|7.
CROSSREFS
Column k=7 of A261477.
Sequence in context: A304504 A344279 A022736 * A082151 A125375 A217057
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 20 2015
STATUS
approved