login
A261428
Number of permutations p of [2n] without fixed points such that p^8 = Id.
3
1, 1, 9, 105, 7665, 303345, 25893945, 1765268505, 345763843425, 42813526781025, 9399638261838825, 1573582072888650825, 563295733721953657425, 139523356060051359020625, 55722660999371761475705625, 17053184982967015188566885625, 9496879931794641573011009810625
OFFSET
0,3
LINKS
FORMULA
a(n) = (2n)! * [x^(2n)] exp(x^2/2+x^4/4+x^8/8).
MAPLE
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*b(n-j), j=[2, 4, 8])))
end:
a:= n-> b(2*n):
seq(a(n), n=0..20);
CROSSREFS
Bisection of column k=8 of A261430.
Cf. A053498.
Sequence in context: A110698 A012485 A052503 * A122569 A309652 A357295
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2015
STATUS
approved