login
A261265
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00010101 00100101 or 01010101.
9
36, 41, 41, 91, 52, 91, 166, 110, 110, 166, 321, 232, 288, 232, 321, 586, 418, 690, 690, 418, 586, 1123, 758, 1483, 1918, 1483, 758, 1123, 2082, 1436, 2948, 4350, 4350, 2948, 1436, 2082, 3938, 2724, 6795, 10382, 11733, 10382, 6795, 2724, 3938, 7358, 5122
OFFSET
1,1
COMMENTS
Table starts
...36...41....91....166.....321.....586.....1123......2082.......3938
...41...52...110....232.....418.....758.....1436......2724.......5122
...91..110...288....690....1483....2948.....6795.....14292......32297
..166..232...690...1918....4350...10382....26072.....63964.....155288
..321..418..1483...4350...11733...28540....85617....217484.....628033
..586..758..2948..10382...28540...85506...274100....842884....2548286
.1123.1436..6795..26072...85617..274100..1062118...3488342...12721239
.2082.2724.14292..63964..217484..842884..3488342..13599460...52483912
.3938.5122.32297.155288..628033.2548286.12721239..52483912..242945986
.7358.9588.66828.379950.1580858.7832046.41920830.207199986.1013896912
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +2*a(n-4) +a(n-6) for n>7
k=2: a(n) = a(n-1) +2*a(n-3) +a(n-4) +2*a(n-5) for n>6
k=3: [order 12] for n>13
k=4: [order 16] for n>17
k=5: [order 25] for n>28
k=6: [order 31] for n>36
k=7: [order 55] for n>62
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..0..0..1....0..0..1..0..0..0....1..0..1..0..1..0....1..0..0..1..0..1
..1..0..1..0..1..0....0..1..0..1..0..1....0..0..0..1..0..1....0..0..1..0..1..0
..0..1..0..1..0..1....1..0..1..0..1..0....1..0..1..0..0..0....0..1..0..1..0..1
..1..0..1..0..0..0....0..1..0..1..0..1....0..1..0..1..0..1....1..0..1..0..1..0
..0..0..0..1..0..1....1..0..0..0..1..0....0..0..1..0..1..0....0..1..0..1..0..1
..0..0..1..0..1..0....0..0..1..0..0..1....0..1..0..0..0..1....1..0..1..0..0..0
CROSSREFS
Sequence in context: A060292 A334911 A305942 * A344808 A295694 A295492
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 13 2015
STATUS
approved