login
Expansion of phi(q) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function.
1

%I #10 Mar 12 2021 22:24:48

%S 1,2,0,0,2,0,-2,-4,0,2,-4,0,0,0,0,-4,2,0,0,0,0,0,-4,0,2,6,0,0,4,0,0,

%T -4,0,4,0,0,2,0,0,0,4,0,-4,0,0,0,0,0,0,6,0,0,0,0,-2,-8,0,0,-4,0,4,0,0,

%U -4,2,0,0,0,0,0,-8,0,0,4,0,0,0,0,0,-4,0,2

%N Expansion of phi(q) * phi(-q^6) in powers of q where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A260309/b260309.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q^2)^5 * eta(q^6)^2 / (eta(q)^2 * eta(q^4)^2* eta(q^12)) in powers of q.

%F Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -5, 2, -1, 2, -3, 2, -2, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 1536^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A260308.

%F G.f.: Sum_{i,j in Z} (-1)^j * x^(i^2 + 6*j^2).

%F a(n) = (-1)^floor(n/2) * A046113(n). a(3*n + 2) = 0. a(4*n) = A046113(n). 2 * a(n) = A260110(n).

%e G.f. = 1 + 2*x + 2*x^4 - 2*x^6 - 4*x^7 + 2*x^9 - 4*x^10 - 4*x^15 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, -q^6], {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2* eta(x^12 + A)), n))};

%Y Cf. A046113, A260110, A260308.

%K sign

%O 0,2

%A _Michael Somos_, Jul 22 2015