%I #13 Jan 29 2018 21:13:33
%S 0,1,7,56,532,5978,78190,1171016,19795048,373150316,7765117444,
%T 176867001920,4377593349808,117008560148984,3359391916968808,
%U 103116666783684512,3370015324850779360,116837927866976317904,4283225196844255657072,165548433805933065663104
%N n*a(n+1) = (2*n^2 + 3*n + 2)*a(n) - (n^2 - n - 2)*a(n-1) with n>1, a(0)=0, a(1)=1.
%H Robert Israel, <a href="/A259900/b259900.txt">Table of n, a(n) for n = 0..403</a>
%F a(n) ~ 7 * exp(1/4) * 2^(n+3) * n! * n^(1/4) / (15*Gamma(1/4)). - _Vaclav Kotesovec_, Jul 09 2015
%p f:= gfun:-rectoproc({n*a(n+1) = (2*n^2 + 3*n + 2)*a(n) - (n^2 - n - 2)*a(n-1), a(0)=0, a(1)=1},a(n),remember):
%p map(f, [$0..30]); # _Robert Israel_, Jan 29 2018
%t RecurrenceTable[{a[0] == 0, a[1] == 1, n a[n + 1] == (2 n^2 + 3 n + 2) a[n] - (n + 1) (n - 2) a[n - 1]}, a, {n, 30}]
%K nonn,easy
%O 0,3
%A _G. C. Greubel_, Jul 07 2015