login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259608 G.f. A(x) satisfies: A(x) = Series_Reversion( x - x^2*A(x) - x*Integral 2*A(x) dx ). 1
1, 2, 15, 164, 2190, 33384, 561659, 10226376, 198975366, 4101249990, 88985266436, 2022670569000, 47986654728506, 1184722493746988, 30364559922967455, 806313807163378768, 22146014022165507644, 628220131284285896472, 18382404744008384580629, 554214116675011187495440 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..20.

FORMULA

G.f. A(x) satisfies:

(1) A(x) = Series_Reversion( x - Sum_{n>=1} (n+1)/n * a(n) * x^(2*n+1) ).

(2) A(x) = x + Sum_{n>=1} (n+1)/n * a(n) * A(x)^(2*n+1).

Let B(x) = Integral 2*A(x) dx, then

(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (x*A(x) + B(x))^n * x^n / n!.

(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (x*A(x) + B(x))^n * x^(n-1) / n! ).

a(n)/n = A259609(n) for n>=1.

EXAMPLE

G.f.: A(x) = x + 2*x^3 + 15*x^5 + 164*x^7 + 2190*x^9 + 33384*x^11 +...

Let B(x) = Integral 2*A(x) dx

B(x) = x^2 + x^4 + 5*x^6 + 41*x^8 + 438*x^10 + 5564*x^12 + 80237*x^14 + 1278297*x^16 + 22108374*x^18 +...+ A259609(n)*x^(2*n) +...

such that A(x - x^2*A(x) - x*B(x)) = x.

Also,

A(x) = x + (x*A(x) + B(x))*x + [d/dx (x*A(x) + B(x))^2*x^2]/2! + [d^2/dx^2 (x*A(x) + B(x))^3*x^3]/3! + [d^3/dx^3 (x*A(x) + B(x))^4*x^4]/4! + [d^4/dx^4 (x*A(x) + B(x))^5*x^5]/5! +...

Logarithmic series:

log(A(x)/x) = (x*A(x) + B(x)) + [d/dx (2*x*A(x) + B(x))^2*x]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3*x^2]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4*x^3]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5*x^4]/5! +...

PROG

(PARI) {a(n)=local(A=x); for(i=0, n, A = serreverse(x - x^2*A - x*intformal(2*A) +x*O(x^(2*n)))); polcoeff(A, 2*n-1)}

for(n=1, 25, print1(a(n), ", "))

CROSSREFS

Cf. A259609.

Sequence in context: A139085 A268070 A204679 * A317278 A140809 A153852

Adjacent sequences:  A259605 A259606 A259607 * A259609 A259610 A259611

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 06:24 EDT 2019. Contains 323599 sequences. (Running on oeis4.)