login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259060
Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.
2
6426, 7900, 9614, 11592, 13858, 16436, 19350, 22624, 26282, 30348, 34846, 39800, 45234, 51172, 57638, 64656, 72250, 80444, 89262, 98728, 108866, 119700, 131254, 143552, 156618, 170476, 185150, 200664, 217042, 234308, 252486, 271600, 291674
OFFSET
0,1
COMMENTS
This is the second part of Exercise 229 in Sierpiński's problem book. See p. 20, and p. 110 for the solution. He uses the identity (n-8)^3 + (n-1)^3 + (n+1)^3 + (n+8)^3 = 4*n^3 + 390 = (n-7)^3 + (n-4)^3 + (n+4)^3 + (n+7)^3, for n >= 9.
Here n is replaced by n + 9: (n+1)^3 + (n+8)^3 + (n+10)^3 + (n+17)^3 = 4*n^3 + 108*n^2 + 1362*n + 6426 = (n+2)^3 + (n+5)^3 + (n+13)^3 + (n+16)^3, for n >= 0.
There may be other numbers with this properties.
Because the summands have no common factor > 1 each of these two representations is called primitive. - Wolfdieter Lang, Aug 20 2015
REFERENCES
W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
FORMULA
a(n) = (2*(n+9))*(2*n^2+36*n+357) = 2*A261241(n), n >= 0. See the comment for the sum of four distinct cubes in two different ways.
O.g.f.: 2*(3213 - 8902*x + 8285*x^2 - 2584*x^3) / (1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015
EXAMPLE
a(0) = 6426 = 1^3 + 8^3 + 10^3 + 17^3 = 2^3 + 5^3 + 13^3 + 16^3.
a(1) = 7900 = 2^3 + 9^3 + 11^3 + 18^3 = 3^3 + 6^3 + 14^3 + 17^3.
MATHEMATICA
CoefficientList[Series[2 (3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)
LinearRecurrence[{4, -6, 4, -1}, {6426, 7900, 9614, 11592}, 40] (* Harvey P. Dale, Sep 30 2016 *)
PROG
(Magma) [(2*(n+9))*(2*n^2+36*n+357): n in [0..50]] /* or */ I:=[6426, 7900, 9614, 11592]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
CROSSREFS
Cf. A261241, A259058 (squares).
Sequence in context: A270056 A031578 A252612 * A259078 A104374 A222554
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 12 2015
STATUS
approved