login
A258732
Number of length n+2 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.
1
64, 225, 608, 1408, 2936, 5664, 10280, 17754, 29416, 47047, 72984, 110240, 162640, 234974, 333168, 464474, 637680, 863341, 1154032, 1524624, 1992584, 2578300, 3305432, 4201290, 5297240, 6629139, 8237800, 10169488, 12476448, 15217466
OFFSET
1,1
COMMENTS
Row 2 of A258730.
LINKS
FORMULA
Empirical: a(n) = (1/5040)*n^7 + (1/120)*n^6 + (53/360)*n^5 + (5/4)*n^4 + (5167/720)*n^3 + (2489/120)*n^2 + (2591/105)*n + 10.
Empirical g.f.: x*(64 - 287*x + 600*x^2 - 740*x^3 + 576*x^4 - 282*x^5 + 80*x^6 - 10*x^7) / (1 - x)^8. - Colin Barker, Jan 26 2018
EXAMPLE
Some solutions for n=4:
..0....2....2....1....1....0....2....1....3....0....2....0....1....1....0....1
..0....2....2....1....0....0....3....2....0....2....3....0....1....1....2....1
..1....3....2....2....1....3....1....3....1....2....3....3....3....2....2....3
..2....3....2....3....1....0....1....1....1....1....0....2....0....2....3....0
..1....3....3....0....1....1....2....1....2....2....1....3....0....0....3....1
..3....0....0....0....0....2....3....1....2....3....3....3....0....0....0....3
CROSSREFS
Cf. A258730.
Sequence in context: A295021 A194932 A016994 * A279714 A228802 A222547
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 08 2015
STATUS
approved