OFFSET
0,3
COMMENTS
More generally, we have the identity for real t:
* if G(x) = exp( Integral G(x)^t * Integral 1/G(x)^(3*t) dx dx ),
then G(x) = exp( Integral 1/G(x)^t * Integral G(x)^(3*t) dx dx ).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..190
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( Integral 1/A(x)^2 * Integral A(x)^6 dx dx ).
a(n) ~ c * 2^(7*n+1) * Pi^(n+1) * n^(2*n) / (exp(2*n) * Gamma(1/4)^(4*n)), where c = 2^(7/4) / (Gamma(1/4) * Pi^(3/4)) = 0.393150663417355411930715... . - Vaclav Kotesovec, Jun 15 2015, updated Mar 17 2024
EXAMPLE
E.g.f. A(x) = 1 + x^2/2! + 3*x^4/4! + 63*x^6/6! + 1449*x^8/8! + 79569*x^10/10! +...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Sqrt @ JacobiDC[ x, -1], {x, 0, m}]]]; (* Michael Somos, Jun 17 2016 *)
PROG
(PARI) {a(n) = local(A=1+x); for(i=1, n, A = exp( intformal( A^2 * intformal(1/A^6 + x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(2*n), ", "))
(PARI) {a(n) = local(A=1+x); for(i=1, n, A = exp( intformal( 1/A^2 * intformal(A^6 + x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(2*n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 06 2015
STATUS
approved