OFFSET
0,1
COMMENTS
Set v = A156590 and u = (A156548 - 1). Then the continued fractions evaluate to i/(i + i/(i + i/...)) = (sqrt(4*i - 1) - i)/2 = v + u*i and i/(1 + i/(1 + i/...)) = (sqrt(4*i + 1) - 1)/2 = u + v*i. They can be evaluated either explicitly or as limits of the convergent recursive mappings z -> i/(i + z) and z -> i/(1 + z), respectively, starting, for example, with z = 0.
An algebraic integer of degree 8. - Charles R Greathouse IV, Jun 02 2015
LINKS
FORMULA
Equals sqrt(1 + sqrt(17) - sqrt(2*(1 + sqrt(17))))/2.
EXAMPLE
0.69320546462379732043436370422413868794102175016921901339955586752...
MATHEMATICA
RealDigits[Sqrt[1 + Sqrt[17] - Sqrt[2*(1 + Sqrt[17])]]/2, 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
PROG
(PARI) sqrt(1+sqrt(17)-sqrt(2*(1+sqrt(17))))/2
(PARI) polrootsreal(x^8-x^6-2*x^4-x^2+1)[3] \\ Charles R Greathouse IV, Jun 02 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, May 29 2015
STATUS
approved