login
A257441
Number of (n+2) X (2+2) 0..1 arrays with no 3 X 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1.
1
36, 38, 41, 51, 68, 95, 134, 191, 275, 398, 578, 842, 1229, 1796, 2627, 3845, 5630, 8246, 12080, 17699, 25934, 38003, 55691, 81614, 119606, 175286, 256889, 376484, 551759, 808637, 1185110, 1736858, 2545484, 3730583, 5467430, 8012903, 11743475
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>8.
Empirical g.f.: x*(36 - 34*x + x^2 - 29*x^3 + 5*x^4 + 7*x^5 + 2*x^6 + x^7) / ((1 - x)*(1 - x - x^3)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..1....0..1..1..0....1..0..1..1....1..0..1..1....1..1..0..1
..0..0..0..0....0..1..1..1....1..0..1..1....0..0..0..0....1..1..0..1
..1..1..1..1....0..1..1..1....0..0..0..0....1..0..1..1....1..1..0..1
..1..1..1..1....0..0..0..0....1..0..1..1....1..0..1..1....1..1..0..1
..0..0..0..0....0..1..1..1....1..0..1..1....1..0..1..1....1..1..0..1
..1..1..1..1....0..1..1..1....0..0..0..0....0..0..0..0....1..1..0..1
CROSSREFS
Column 2 of A257447.
Sequence in context: A160553 A295751 A031317 * A181457 A261380 A337861
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 23 2015
STATUS
approved