login
A256857
a(n) = n*(n^2 + 3*n - 2)/2.
2
0, 1, 8, 24, 52, 95, 156, 238, 344, 477, 640, 836, 1068, 1339, 1652, 2010, 2416, 2873, 3384, 3952, 4580, 5271, 6028, 6854, 7752, 8725, 9776, 10908, 12124, 13427, 14820, 16306, 17888, 19569, 21352, 23240, 25236, 27343, 29564, 31902, 34360, 36941, 39648, 42484, 45452, 48555
OFFSET
0,3
COMMENTS
The sequence is the 5th upper diagonal of the array in A139600.
FORMULA
G.f.: x*(1 + 4*x -2*x^2)/(1 - x)^4.
a(n) = A057145(n+6,n). - R. J. Mathar, Jul 28 2016
a(n) = Sum_{i=1..n} (n-i-1) mod (n+1). - Wesley Ivan Hurt, Sep 15 2017
E.g.f.: exp(x)*x*(2 + 6*x + x^2)/2. - Stefano Spezia, Jan 20 2024
MATHEMATICA
Table[n (n^2 + 3 n - 2)/2, {n, 0, 40}]
PROG
(Magma) [n*(n^2+3*n-2)/2: n in [0..50]]; // Vincenzo Librandi, Apr 14 2015
(PARI) vector(50, n, n--; n*(n^2+3*n-2)/2) \\ Bruno Berselli, Apr 15 2015
CROSSREFS
Sequence in context: A064225 A304844 A054275 * A122655 A280231 A212972
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 11 2015
EXTENSIONS
a(41)-a(45) from Stefano Spezia, Jan 20 2024
STATUS
approved