login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255992 T(n,k)=Number of length n+k 0..1 arrays with at most one downstep in every k consecutive neighbor pairs 11
4, 8, 8, 15, 16, 16, 26, 28, 32, 32, 42, 45, 53, 64, 64, 64, 68, 80, 100, 128, 128, 93, 98, 114, 144, 188, 256, 256, 130, 136, 156, 196, 256, 354, 512, 512, 176, 183, 207, 257, 337, 451, 667, 1024, 1024, 232, 240, 268, 328, 428, 568, 796, 1256, 2048, 2048, 299, 308 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

....4....8...15...26...42...64...93..130..176..232..299..378..470..576...697

....8...16...28...45...68...98..136..183..240..308..388..481..588..710...848

...16...32...53...80..114..156..207..268..340..424..521..632..758..900..1059

...32...64..100..144..196..257..328..410..504..611..732..868.1020.1189..1376

...64..128..188..256..337..428..530..644..771..912.1068.1240.1429.1636..1862

..128..256..354..451..568..705..854.1016.1192.1383.1590.1814.2056.2317..2598

..256..512..667..796..945.1134.1352.1584.1831.2094.2374.2672.2989.3326..3684

..512.1024.1256.1413.1574.1797.2088.2419.2766.3130.3512.3913.4334.4776..5240

.1024.2048.2365.2510.2645.2848.3175.3606.4090.4592.5113.5654.6216.6800..7407

.2048.4096.4454.4448.4476.4560.4824.5294.5912.6598.7304.8031.8780.9552.10348

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..9999

FORMULA

Empirical for column k:

k=1: a(n) = 2*a(n-1)

k=2: a(n) = 2*a(n-1)

k=3: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4)

k=4: a(n) = 2*a(n-1) -a(n-2) +3*a(n-4) -2*a(n-5)

k=5: a(n) = 2*a(n-1) -a(n-2) +4*a(n-5) -3*a(n-6)

k=6: a(n) = 2*a(n-1) -a(n-2) +5*a(n-6) -4*a(n-7)

k=7: a(n) = 2*a(n-1) -a(n-2) +6*a(n-7) -5*a(n-8)

Empirical for row n:

n=1: a(n) = (1/6)*n^3 + (1/2)*n^2 + (4/3)*n + 2

n=2: a(n) = (1/6)*n^3 + n^2 + (23/6)*n + 3

n=3: a(n) = (1/6)*n^3 + (3/2)*n^2 + (31/3)*n + 4

n=4: a(n) = (1/6)*n^3 + 2*n^2 + (143/6)*n + 6 for n>2

n=5: a(n) = (1/6)*n^3 + (5/2)*n^2 + (145/3)*n + 12 for n>3

n=6: a(n) = (1/6)*n^3 + 3*n^2 + (533/6)*n + 28 for n>4

n=7: a(n) = (1/6)*n^3 + (7/2)*n^2 + (454/3)*n + 64 for n>5

EXAMPLE

Some solutions for n=4 k=4

..1....1....0....0....0....0....0....1....0....0....1....0....1....0....0....0

..1....0....0....1....1....0....0....1....1....0....1....0....1....0....0....1

..1....0....1....1....1....0....1....0....0....0....1....1....0....1....0....1

..1....1....0....1....0....1....1....0....0....0....0....1....0....0....1....1

..0....1....0....0....0....1....1....1....0....1....1....1....1....0....1....1

..1....1....0....1....1....0....1....1....0....0....1....1....1....0....1....1

..1....0....0....1....1....1....1....1....1....1....1....0....1....0....1....0

..1....1....1....1....0....1....0....1....0....1....0....1....0....0....1....1

CROSSREFS

Column 1 is A000079(n+1)

Column 2 is A000079(n+2)

Column 3 is A118870(n+3)

Row 1 is A000125(n+1)

Sequence in context: A316316 A159786 A083744 * A273572 A273779 A114027

Adjacent sequences:  A255989 A255990 A255991 * A255993 A255994 A255995

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Mar 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 10:59 EST 2019. Contains 320219 sequences. (Running on oeis4.)