login
A255457
a(n) = A255456(2^n-1).
2
1, 5, 23, 93, 359, 1335, 4873, 17535, 62601, 222181, 785855, 2772717, 9768351, 34378167, 120910529, 425062511, 1493898001, 5249371781, 18443445415, 64795091709, 227625068503, 799619495287, 2808906276921, 9866994688223, 34659998140825, 121750158651877, 427670046315727, 1502266603229837, 5276968090316303
OFFSET
0,2
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
G.f.: (1-x)*(1+x-x^2+x^3) / (1-5*x+24*x^3-15*x^4-17*x^5).
a(n) = 5*a(n-1) - 24*a(n-3) + 15*a(n-4) + 17*a(n-5) for n>4. - Colin Barker, Feb 03 2017
MATHEMATICA
LinearRecurrence[{5, 0, -24, 15, 17}, {1, 5, 23, 93, 359}, 30] (* Jean-François Alcover, Jan 09 2019 *)
PROG
(PARI) Vec((1-x)*(1+x-x^2+x^3) / (1-5*x+24*x^3-15*x^4-17*x^5) + O(x^30)) \\ Colin Barker, Feb 03 2017
CROSSREFS
Cf. A255456.
Sequence in context: A178834 A331720 A327973 * A146013 A028894 A254824
KEYWORD
nonn,easy
AUTHOR
STATUS
approved