login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255457 a(n) = A255456(2^n-1). 2
1, 5, 23, 93, 359, 1335, 4873, 17535, 62601, 222181, 785855, 2772717, 9768351, 34378167, 120910529, 425062511, 1493898001, 5249371781, 18443445415, 64795091709, 227625068503, 799619495287, 2808906276921, 9866994688223, 34659998140825, 121750158651877, 427670046315727, 1502266603229837, 5276968090316303 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.

N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (5,0,-24,15,17).

FORMULA

G.f.: (1-x)*(1+x-x^2+x^3) / (1-5*x+24*x^3-15*x^4-17*x^5).

a(n) = 5*a(n-1) - 24*a(n-3) + 15*a(n-4) + 17*a(n-5) for n>4. - Colin Barker, Feb 03 2017

PROG

(PARI) Vec((1-x)*(1+x-x^2+x^3) / (1-5*x+24*x^3-15*x^4-17*x^5) + O(x^30)) \\ Colin Barker, Feb 03 2017

CROSSREFS

Cf. A255456.

Sequence in context: A246175 A283224 A178834 * A146013 A028894 A254824

Adjacent sequences:  A255454 A255455 A255456 * A255458 A255459 A255460

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and Doron Zeilberger, Feb 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 21:33 EDT 2017. Contains 292500 sequences.