%I
%S 0,1,3,6,11,20,36,65,118,215,393,721,1329,2463,4589,8590,16142,30434,
%T 57549,109114,207388,395045,754027,1441971,2762764,5303466,10200385,
%U 19656528,37948281,73384080,142115376,275551755,534790472,1038702980,2018626772,3924923937,7634733312
%N Number of steps to reach 0 when starting from (2^n)2 and iterating the map x > x  (number of runs in binary representation of x): a(n) = A255072(A000918(n)).
%C Apart from a(1)=1, gives also the positions of ones in A255054.
%F a(n) = A255072(A000918(n)).
%F a(1) = 0; for n > 1, a(n) = a(n1) + A255071(n1).
%F Other identities. For all n >= 1:
%F a(n) = A255062(n)  1.
%o (Scheme)
%o (define (A255061 n) (A255072 (A000918 n)))
%o (define (A255061 n) (if (= 1 n) 0 (+ (A255061 ( n 1)) (A255071 ( n 1))))) ;; Assuming that A255071 has been already computed, with e.g. the PARIprogram given in that entry.
%Y One less than A255062.
%Y First differences: A255071.
%Y Apart from a(1)=1, a subsequence of A255059.
%Y Cf. A000918, A255072, A255054.
%Y Analogous sequences: A218600, A226061.
%K nonn
%O 1,3
%A _Antti Karttunen_, Feb 14 2015
