login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254930 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1 (primes congruent to 1 or 7 mod 8). 3
5, 7, 11, 9, 13, 17, 13, 19, 23, 17, 15, 21, 25, 17, 23, 27, 35, 23, 29, 21, 41, 25, 31, 23, 35, 29, 39, 43, 37, 31, 27, 49, 53, 33, 31, 37, 47, 41, 55, 59, 31, 45, 39, 49, 37, 35, 61, 37, 35 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The corresponding terms y = y2(n) are given in A254931(n).

There is only one fundamental solution for prime 2 (no second class exists), and this solution (x, y) has been included in (A002334(1), A002335(1)) = (2, 1).

The second class x sequence for the primes 1 (mod 8), which are given in A007519, is A254762, and for the primes 7 (mod 8), given in A007522, it is A254766.

The second class solutions give the second smallest positive integer solutions of this Pell equation.

For comments and the Nagell reference see A254760.

LINKS

Table of n, a(n) for n=1..49.

FORMULA

a(n)^2 - 2*A254931(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer solving this (generalized) Pell equation.

a(n) = 3*A002334(n+1) - 4*A002335(n+1), n >= 1.

EXAMPLE

n = 3: 11^2 - 2*7^2 = 23 = A001132(3) = A007522(2).

The first pairs of these second class solutions [x2(n), y2(n)] are (a star indicates primes congruent to 1 (mod 8)):

n  A001132(n)   a(n)  A254931(n)

1     7           5        3

2    17 *         7        4

3    23          11        7

4    31           9        5

5    41 *        13        8

6    47          17       11

7    71          13        7

8    73 *        19       12

9    89 *        17       10

10   97 *        15        8

11  103          21       13

12  113 *        25       16

13  127          17        9

14  137 *        23       14

15  151          27       17

16  167          35       23

17  191          23       13

18  193 *        29       18

19  199          21       11

20  223          41       27

...

MATHEMATICA

Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; x2 = xy[[-1, 1]] // Simplify; Print[x2]; Sow[x2]]]]][[2, 1]] (* Jean-Fran├žois Alcover, Oct 28 2019 *)

CROSSREFS

Cf. A001132, A254931, A002334, A002335, A007519, A254762, A007522, A254766, A254760.

Sequence in context: A096919 A023594 A277777 * A317769 A104200 A249916

Adjacent sequences:  A254927 A254928 A254929 * A254931 A254932 A254933

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Feb 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 23:06 EST 2019. Contains 329348 sequences. (Running on oeis4.)