%I #29 Sep 08 2022 08:46:11
%S 0,1,1,2,3,5,8,11,19,30,41,71,112,153,265,418,571,989,1560,2131,3691,
%T 5822,7953,13775,21728,29681,51409,81090,110771,191861,302632,413403,
%U 716035,1129438,1542841,2672279,4215120,5757961,9973081,15731042,21489003,37220045
%N a(n) = a(n-1) + (if a(n-1) is odd a(n-2) else a(n-3)) with a(0) = 0, a(1) = 1.
%C Every third iteration is a tribonacci-type recursion: a(n) = a(n-1) + a(n-3) otherwise it is Fibonacci-type a(n) = a(n-1) + a(n-2).
%H Reinhard Zumkeller, <a href="/A254308/b254308.txt">Table of n, a(n) for n = 0..1000</a>
%H Russell Walsmith, <a href="/A254308/a254308.pdf">Fibonacci-Tribonacci Fusion</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,4,0,0,-1).
%F Two identities: a(3n)/2 + a(3n-3)/2 = a(3n-1); a(3n)/2 - a(3n-3)/2 = a(3n-2).
%F G.f.: x * (1 + x + 2*x^2 - x^3 + x^4) / (1 - 4*x^3 + x^6). - _Michael Somos_, Feb 23 2015
%F 0 = a(n) - 4*a(n+3) + a(n+6) for all n in Z. - _Michael Somos_, Feb 23 2015
%F a(3*n) = A052530(n). a(3*n-2) = A001835(n). a(3*n+2) = A001834(n). - _Michael Somos_, Feb 23 2015
%e For n = 7, a(n-1) is even so 8 + 3 = 11.
%e G.f. = x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 19*x^8 + 30*x^9 + ...
%t CoefficientList[Series[x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6), {x, 0, 60}], x] (* _G. C. Greubel_, Aug 03 2018 *)
%t nxt[{a_,b_,c_}]:={b,c,If[OddQ[c],c+b,c+a]}; NestList[nxt,{0,1,1},50][[All,1]] (* or *) LinearRecurrence[{0,0,4,0,0,-1},{0,1,1,2,3,5},50] (* _Harvey P. Dale_, May 12 2022 *)
%o (PARI) {a(n) = polcoeff( x * if( n<0, n=-n; -(1 - x + 2*x^2 + x^3 + x^4), (1 + x + 2*x^2 - x^3 + x^4)) / (1 - 4*x^3 + x^6) + x * O(x^n), n)}; /* _Michael Somos_, Feb 23 2015 */
%o (Haskell)
%o a254308 n = a254308_list !! n
%o a254308_list = 0 : 1 : 1 : zipWith3 (\u v w -> u + if odd u then v else w)
%o (drop 2 a254308_list) (tail a254308_list) a254308_list
%o -- _Reinhard Zumkeller_, Feb 24 2015
%o (Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+2*x^2-x^3+x^4)/(1-4*x^3+x^6))); // _G. C. Greubel_, Aug 03 2018
%Y Cf. A001834, A001835, A052530.
%K nonn
%O 0,4
%A _Russell Walsmith_, Feb 23 2015