login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock diagonal maximum minus antidiagonal maximum unequal to its neighbors horizontally, vertically, diagonally and antidiagonally
9

%I #4 Dec 30 2014 08:30:41

%S 81,518,518,3550,1752,3550,23524,10064,10064,23524,157476,43220,64560,

%T 43220,157476,1051870,214676,266074,266074,214676,1051870,7027770,

%U 1053094,1547188,516928,1547188,1053094,7027770,46953514,5067576,8858020

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock diagonal maximum minus antidiagonal maximum unequal to its neighbors horizontally, vertically, diagonally and antidiagonally

%C Table starts

%C .........81.......518........3550......23524......157476....1051870

%C ........518......1752.......10064......43220......214676....1053094

%C .......3550.....10064.......64560.....266074.....1547188....8858020

%C ......23524.....43220......266074.....516928.....2643738....6728458

%C .....157476....214676.....1547188....2643738....16534784...53883500

%C ....1051870...1053094.....8858020....6728458....53883500...45899840

%C ....7027770...5067576....51974842...30117394...300393602..352580820

%C ...46953514..24964956...316785048...99695754..1497743060..411726542

%C ..313711862.121517288..1889816848..410717008..8035298482.2447644466

%C .2095963398.593800326.11520937494.1591420928.45266774466.4549989670

%H R. H. Hardin, <a href="/A253314/b253314.txt">Table of n, a(n) for n = 1..480</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 10] for n>11

%F k=2: [order 39] for n>41

%F k=3: [order 49] for n>55

%F k=4: [order 62] for n>73

%F k=5: [order 51] for n>69

%F k=6: [order 50] for n>64

%F k=7: [order 51] for n>64

%e Some solutions for n=3 k=4

%e ..0..0..0..0..2....0..2..0..0..1....1..0..1..1..0....1..2..0..0..0

%e ..0..1..0..1..1....0..1..1..0..1....1..0..0..2..0....0..0..1..0..0

%e ..2..0..2..0..1....2..0..0..2..0....0..0..2..0..1....1..2..0..0..2

%e ..1..0..1..0..0....0..1..2..1..0....2..0..1..2..2....1..0..0..0..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 30 2014