login
A252591
Number of distinct proper angles that can be formed by a vertex and two leg endpoints on grid points in an n X n square grid.
2
2, 10, 28, 66, 154, 269, 473, 781, 1156, 1689, 2537, 3230, 4635, 6012, 7639, 9755, 12876, 15295, 19533, 23640, 27935, 32992, 40558, 46074, 55514, 64464, 74191, 84280, 99179, 109179, 127668, 144365, 161111, 180367, 203594, 222432, 253175, 280329, 307007, 337134, 378902, 405409, 453916, 494119, 535346
OFFSET
2,1
COMMENTS
a(n)/n^4 lies in the interval[0.112, 0.123] for all 5 < n < 120.
LINKS
EXAMPLE
For n=2, a(2)=2 as only angles of Pi/2 and Pi/4 can be formed on the vertices of a 2 X 2 square. For n=3, 8 additional angles can be formed, including 3*Pi/4 and one other obtuse angle, and six new acute angles; thus a(3)=10.
PROG
(C++) See links.
CROSSREFS
Sequence in context: A109723 A053594 A006331 * A296849 A296380 A291053
KEYWORD
nonn
AUTHOR
Mark S. Fischler, Dec 18 2014
STATUS
approved