login
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 1 3 6 or 7
9

%I #4 Dec 16 2014 17:33:04

%S 1557,2498,2498,4197,1974,4197,7815,1918,1918,7815,15269,2579,2493,

%T 2579,15269,28883,5029,6011,6011,5029,28883,56052,10448,18820,23422,

%U 18820,10448,56052,111752,25875,62915,97191,97191,62915,25875,111752,222145

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 1 3 6 or 7

%C Table starts

%C ...1557...2498....4197......7815......15269.......28883........56052

%C ...2498...1974....1918......2579.......5029.......10448........25875

%C ...4197...1918....2493......6011......18820.......62915.......214325

%C ...7815...2579....6011.....23422......97191......409636......1741936

%C ..15269...5029...18820.....97191.....505062.....2670867.....14105723

%C ..28883..10448...62915....409636....2670867....17562749....115183853

%C ..56052..25875..214325...1741936...14105723...115183853....937981280

%C .111752..68772..735703...7424869...74390225...755608304...7634090167

%C .222145.184492.2536027..31630640..393421805..4967205339..62282796267

%C .444181.504259.8732521.134638865.2079994660.32613907484.507708324342

%H R. H. Hardin, <a href="/A252321/b252321.txt">Table of n, a(n) for n = 1..241</a>

%F Empirical for column k:

%F k=2: [linear recurrence of order 58] for n>68

%F k=3: [order 27] for n>34

%F k=4: [order 32] for n>37

%F k=5: [order 52] for n>57

%F k=6: [order 80] for n>85

%e Some solutions for n=4 k=4

%e ..3..2..3..3..3..2....3..3..2..3..3..3....3..3..2..3..3..2....3..2..3..3..2..3

%e ..3..3..3..3..3..3....3..3..3..3..2..3....2..3..3..3..3..3....3..3..3..3..3..2

%e ..3..3..3..3..3..3....3..3..3..3..3..3....3..3..3..3..3..3....3..3..3..3..3..3

%e ..3..3..3..3..3..3....3..3..3..3..3..3....3..3..3..3..3..3....3..3..3..3..2..3

%e ..3..3..3..2..3..3....3..3..3..3..3..2....3..3..3..3..3..3....3..3..3..3..3..3

%e ..3..2..3..3..3..3....3..3..2..3..3..3....2..3..3..2..3..3....3..2..3..3..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 16 2014