login
A252243
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not equal to 1 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum equal to 1 3 4 6 or 7
9
342, 858, 858, 2174, 3896, 2174, 4708, 16056, 16056, 4708, 13376, 43848, 108882, 43848, 13376, 34364, 215424, 331884, 331884, 215424, 34364, 74824, 932024, 2908368, 1179792, 2908368, 932024, 74824, 213344, 2568432, 22430004, 11206944
OFFSET
1,1
COMMENTS
Table starts
.....342.......858........2174........4708..........13376...........34364
.....858......3896.......16056.......43848.........215424..........932024
....2174.....16056......108882......331884........2908368........22430004
....4708.....43848......331884.....1179792.......11206944........84935088
...13376....215424.....2908368....11206944......193004352......2778727776
...34364....932024....22430004....84935088.....2778727776.....78534150416
...74824...2568432....65274264...301990464....10519316352....267361717440
..213344..12882368...634913568..2868905088...185237247744...9906342078848
..548984..56984208..5227152552.21743273664..2757905884800.303070072292928
.1196176.157483872.14646511152.77309413632.10320806426112.959873651073792
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 18*a(n-3) -32*a(n-6) for n>8
k=2: [order 15] for n>16
k=3: [order 15] for n>16
k=4: a(n) = 260*a(n-3) -1024*a(n-6) for n>7
k=5: [order 15] for n>16
k=6: [order 15] for n>16
k=7: a(n) = 4104*a(n-3) -32768*a(n-6) for n>7
EXAMPLE
Some solutions for n=3 k=4
..0..2..0..3..2..0....1..1..3..1..1..3....0..0..2..3..3..2....0..2..3..3..2..3
..0..2..0..3..2..3....3..0..2..0..3..2....0..0..2..3..3..2....0..2..0..0..2..3
..2..1..2..2..1..2....1..1..0..1..1..3....2..2..1..2..2..1....2..1..2..2..1..2
..0..2..3..0..2..0....1..1..0..1..1..3....0..3..2..3..0..2....0..2..3..3..2..0
..0..2..0..3..2..0....3..3..2..3..0..2....0..0..2..0..3..2....0..2..3..0..2..3
CROSSREFS
Sequence in context: A121205 A038852 A043419 * A252236 A158595 A231267
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2014
STATUS
approved