%I #17 Oct 01 2022 14:18:24
%S 1,0,4,0,7,1,9,9,3,4,8,7,1,1,7,4,5,1,9,7,7,8,7,1,8,9,0,8,5,0,2,2,4,5,
%T 9,0,3,7,7,8,3,9,5,1,0,2,3,2,7,1,6,2,1,7,9,5,4,8,8,3,2,8,7,6,1,6,9,4,
%U 2,7,6,0,7,1,8,3,4,5,5,4,1,0,9,8,3,1,4
%N Decimal expansion of 29*Pi^3/864.
%H Bruno Berselli, <a href="/A251967/a251967_1.pdf">Sums of the type sum(i>=0, (-1)^k/(2i+1)^3)</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals Sum_{i>=0} (-1)^floor(i/3)/(2i+1)^3 = +1 +1/3^3 +1/5^3 -1/7^3 -1/9^3 -1/11^3 +1/13^3 +1/15^3 +1/17^3 - ...
%e 1.040719934871174519778718908502245903778395102327162179548832876169...
%t RealDigits[29 Pi^3/864, 10, 90][[1]]
%o (PARI) 29*Pi^3/864 \\ _Charles R Greathouse IV_, Oct 01 2022
%Y Cf. similar sums:
%Y A233091 for Sum_{i>=0} 1/(2i+1)^3;
%Y A153071 for Sum_{i>=0} (-1)^i/(2i+1)^3;
%Y A251809 for Sum_{i>=0} (-1)^floor(i/2)/(2i+1)^3.
%K nonn,cons
%O 1,3
%A _Bruno Berselli_, Dec 12 2014