|
|
A251610
|
|
Determinants of the spiral knots S(4,k,(1,1,1)).
|
|
1
|
|
|
1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, 17, 36, 19, 0, 21, 44, 23, 0, 25, 52, 27, 0, 29, 60, 31, 0, 33, 68, 35, 0, 37, 76, 39, 0, 41, 84, 43, 0, 45, 92, 47, 0, 49, 100, 51, 0, 53, 108, 55, 0, 57, 116, 59, 0, 61, 124, 63, 0, 65, 132, 67, 0, 69, 140, 71, 0, 73, 148, 75, 0, 77, 156, 79
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(k) = det(S(4,k,(1,1,1))). These knots are also the torus knots T(4,k).
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
A. Breiland, L. Oesper, and L. Taalman, p-Coloring classes of torus knots, Online Missouri J. Math. Sci., 21 (2009), 120-126.
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
|
|
FORMULA
|
a(k) = det(S(4,k,(1,1,1))) = k*(b(k))^2, where b(1)=1, b(2)=sqrt(2), b(k)=sqrt(2)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2).
From Colin Barker, Dec 06 2014: (Start)
b(k) = ((2-(-i)^k-i^k)*k)/2 where i=sqrt(-1).
b(k) = 2*b(k-1)-3*b(k-2)+4*b(k-3)-3*b(k-4)+2*b(k-5)-b(k-6).
G.f.: x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2).
(End)
|
|
EXAMPLE
|
For k=3, b(3)=sqrt(2)b(2)-b(1)=2-1=1, so det(S(4,3,(1,1,1)))=3*1^2=3.
|
|
PROG
|
(PARI)
B=vector(166); B[1]=1; B[2]=s; \\ s := sqrt(2)
for(n=3, #B, B[n]=s*B[n-1]-B[n-2]);
B=substpol(B, s^2, 2);
A=vector(#B, n, n*B[n]^2);
A=substpol(A, s^2, 2)
\\ Joerg Arndt, Dec 06 2014
(PARI)
Vec(x*(x^4+2*x^3-2*x^2+2*x+1) / ((x-1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Dec 07 2014
|
|
CROSSREFS
|
Product of terms of A000027 and A007877.
Sequence in context: A304030 A338802 A242721 * A021703 A321209 A139823
Adjacent sequences: A251607 A251608 A251609 * A251611 A251612 A251613
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Ryan Stees, Dec 05 2014
|
|
EXTENSIONS
|
More terms from Joerg Arndt, Dec 06 2014
|
|
STATUS
|
approved
|
|
|
|