OFFSET
0,1
COMMENTS
This is conjectured to be the value of the dominance number of the triangle grid graph for n >= 14 - see A251419.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014 pp. 278-287.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
FORMULA
G.f.: (3*x^8-3*x^7-x^2-2*x+2) / ((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jul 10 2015
MATHEMATICA
Table[Floor[(n^2 + 7 n - 23) / 14], {n, 0, 80}] (* Vincenzo Librandi, Dec 04 2014 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 1, -2, 1}, {-2, -2, -1, 0, 1, 2, 3, 5, 6}, 60] (* Harvey P. Dale, Mar 19 2020 *)
PROG
(Magma) [Floor((n^2+7*n-23)/14): n in [0..60]]; // Vincenzo Librandi, Dec 04 2014
(PARI) Vec((3*x^8-3*x^7-x^2-2*x+2)/((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 10 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Dec 04 2014
EXTENSIONS
More terms from Vincenzo Librandi, Dec 04 2014
STATUS
approved