%I #21 Mar 29 2015 13:44:17
%S 1,2,2,4,4,6,6,6,6,10,10,10,10,14,14,14,14,14,14,20,20,20,20,20,20,26,
%T 26,26,26,26,26,32,32,32,32,32,32,38,38,38,38,38,38,38,38,38,38,48,48,
%U 48,48,48,48,48,48,48,48,58,58,58,58,58,58,58,58,58,58
%N First differences of A094589.
%C Also, a Golomb-type sequence over A094589, i.e., a sequence obtained from A094589 by repeating each term a certain number of times so that the succession of run lengths of the resulting sequence is again that same sequence.
%C Has the property of idempotence: a(a(n))=a(n).
%H Ivan Neretin, <a href="/A250983/b250983.txt">Table of n, a(n) for n = 1..10000</a>
%t w = {1, 2, 2};
%t i = 3;
%t Do[
%t w = Join[w, Array[Length[w] + 1 &, w[[i++]]]];
%t , {n, 10}
%t ];
%t w
%o (PARI) flargest(va, n) = {vsa = vecsort(va,,12); for (k=1, #vsa, if (vsa[k] < n, return (vsa[k])););}
%o lista(nn) = {voa = [1]; for (n=2, nn, newoa = flargest(voa, n) + voa[n-1]; print1(newoa - voa[n-1], ", "); voa = concat(voa, newoa););} \\ _Michel Marcus_, Mar 24 2015
%Y Cf. A094589 (a(n) with repetitions removed), A001462 (Golomb's sequence), A013189 (Golomb's sequence over squares).
%K nonn,easy
%O 1,2
%A _Ivan Neretin_, Mar 20 2015
%E More terms from _Michel Marcus_, Mar 24 2015