login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250853 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction 15
100, 400, 543, 1225, 2457, 2670, 3136, 8037, 13097, 12311, 7056, 21436, 44797, 63631, 54410, 14400, 49599, 123016, 223933, 291165, 233683, 27225, 103293, 290646, 626416, 1043885, 1280447, 983950, 48400, 198297, 614965, 1499679, 2955136 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

......100.......400.......1225.......3136........7056.......14400.......27225

......543......2457.......8037......21436.......49599......103293......198297

.....2670.....13097......44797.....123016......290646......614965.....1195457

....12311.....63631.....223933.....626416.....1499679.....3204951.....6279401

....54410....291165....1043885....2955136.....7134786....15344785....30214465

...233683...1280447....4648157...13263136....32201019....69543783...137379337

...983950...5480917...20067117...57570016...140301126...303858745...601566177

..4085631..23024631...84805533..244213216...596722599..1294875471..2567402601

.16796370..95448605..353060845.1019415136..2495502666..5422612945.10763029505

.68555723.391939087.1454214877.4206874336.10311967539.22429374423.44552408777

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..160

FORMULA

Empirical T(n,k) = (((31/36)*k^6+(25/2)*k^5+(1229/18)*k^4+(620/3)*k^3+(10759/36)*k^2+(1181/6)*k+48)*4^n -((5/3)*k^6+(133/6)*k^5+(320/3)*k^4+(1717/6)*k^3+(944/3)*k^2+(344/3)*k)*3^n +(k^6+12*k^5+47*k^4+103*k^3+54*k^2-13*k)*2^n -((1/9)*k^6+(3/2)*k^5+(25/9)*k^4+(13/6)*k^3-(89/9)*k^2+(4/3)*k))/12

Empirical for column k:

k=1: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (832*4^n-846*3^n+204*2^n+2)/12

k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4838*4^n-6300*3^n+2214*2^n-80)/12

k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (18104*4^n-26144*3^n+10680*2^n-644)/12

k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (52650*4^n-80640*3^n+35820*2^n-2688)/12

k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (129528*4^n-206190*3^n+96660*2^n-8190)/12

k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (282492*4^n-462196*3^n+224994*2^n-20568)/12

k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (562288*4^n-939120*3^n+470064*2^n-45220)/12

Empirical for row n:

n=1: a(n) = (1/36)*n^6 + (1/2)*n^5 + (133/36)*n^4 + (43/3)*n^3 + (277/9)*n^2 + (104/3)*n + 16

n=2: a(n) = (2/9)*n^6 + (47/12)*n^5 + (953/36)*n^4 + (1141/12)*n^3 + (6527/36)*n^2 + 172*n + 64

n=3: a(n) = (3/2)*n^6 + (74/3)*n^5 + (621/4)*n^4 + (3161/6)*n^3 + (3691/4)*n^2 + 783*n + 256

n=4: a(n) = (76/9)*n^6 + (1595/12)*n^5 + (28765/36)*n^4 + (31373/12)*n^3 + (155683/36)*n^2 + (10223/3)*n + 1024

n=5: a(n) = (763/18)*n^6 + (1949/3)*n^5 + (136493/36)*n^4 + (72691/6)*n^3 + (693923/36)*n^2 + (43319/3)*n + 4096

n=6: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384

n=7: a(n) = (15887/18)*n^6 + (39464/3)*n^5 + (2674189/36)*n^4 + (462227/2)*n^3 + (12645859/36)*n^2 + (743119/3)*n + 65536

EXAMPLE

Some solutions for n=3 k=4

..2..2..0..0..0....1..2..3..2..2....2..2..1..0..0....3..2..1..1..1

..0..0..0..0..0....0..1..2..2..3....0..0..0..0..0....0..0..0..0..0

..1..1..1..1..1....0..1..2..2..3....1..1..1..1..3....0..0..1..1..2

..0..1..1..1..3....0..1..2..2..3....0..0..0..1..3....0..0..1..1..2

CROSSREFS

Row 1 is A001249(n+1)

Sequence in context: A017174 A202334 A250806 * A017270 A105089 A017510

Adjacent sequences:  A250850 A250851 A250852 * A250854 A250855 A250856

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Nov 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 04:57 EST 2020. Contains 331335 sequences. (Running on oeis4.)