login
A250691
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction
17
104, 543, 520, 2541, 2920, 2512, 11150, 13906, 15246, 11736, 47002, 60508, 74631, 76320, 53032, 193117, 249512, 324648, 383440, 362241, 233300, 780551, 995624, 1315446, 1670016, 1848953, 1647460, 1005121, 3122604, 3894542, 5098590, 6671458
OFFSET
1,1
COMMENTS
Table starts
......104.......543.......2541.......11150.......47002......193117......780551
......520......2920......13906.......60508......249512......995624.....3894542
.....2512.....15246......74631......324648.....1315446.....5098590....19218493
....11736.....76320.....383440.....1670016.....6671458....25235016....92169818
....53032....362241....1848953.....8038566....31728758...117793753...420283865
...233300...1647460....8474002....36673634...143136866...523260542..1832718604
..1005121...7249825...37322413...160222342...617657415..2224688673..7662909389
..4260728..31113316..159438246...676640344..2571646112..9121206688.30911828018
.17835379.131014715..665575403..2784280670.10412478449.36332194553
.73930174.543845812.2731006288.11235235268.41269021168
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 7] for n>11
k=2: [order 13] for n>17
k=3: [same order 13] for n>17
k=4: [same order 13] for n>17
k=5: [same order 13] for n>17
k=6: [same order 13] for n>17
k=7: [same order 13] for n>17
Empirical for row n:
n=1: [linear recurrence of order 7, cf. A250692]
n=2: [order 10, cf. A250693]
n=3: [order 16, cf. A250694]
n=4: [same order 16, cf. A250695]
n=5: [same order 16, cf. A250696]
n=6: [same order 16, cf. A250697]
n=7: [same order 16, cf. A250698].
EXAMPLE
Some solutions for n=3 k=4
..2..3..1..0..0....2..2..3..2..2....2..2..1..1..0....0..1..0..0..0
..2..3..2..1..1....0..0..1..0..0....2..2..2..2..3....0..1..0..0..1
..1..2..1..0..0....0..0..1..1..1....1..1..1..1..2....1..2..1..1..2
..0..1..2..1..3....0..0..1..1..2....0..0..0..0..3....1..2..1..1..2
CROSSREFS
Column 1 is A250669.
Rows 1-7 are A250692, ..., A250698.
Sequence in context: A372294 A234201 A250669 * A250692 A250676 A250677
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 26 2014
STATUS
approved