login
A250427
Number of (n+1)X(3+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column
2
81, 324, 1296, 3600, 10000, 22500, 50625, 99225, 194481, 345744, 614656, 1016064, 1679616, 2624400, 4100625, 6125625, 9150625, 13176900, 18974736, 26501904, 37015056, 50381604, 68574961, 91298025, 121550625, 158760000, 207360000
OFFSET
1,1
COMMENTS
Column 3 of A250432
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)
Empirical for n mod 2 = 0: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (55/512)*n^6 + (53/64)*n^5 + (1001/256)*n^4 + (185/16)*n^3 + (167/8)*n^2 + 21*n + 9
Empirical for n mod 2 = 1: a(n) = (1/4096)*n^8 + (1/128)*n^7 + (111/1024)*n^6 + (109/128)*n^5 + (8483/2048)*n^4 + (1635/128)*n^3 + (24975/1024)*n^2 + (3375/128)*n + (50625/4096).
a(n+1) = A202094(n). - R. J. Mathar, Dec 04 2014
EXAMPLE
Some solutions for n=6
..0..0..0..0....0..0..0..1....0..0..1..1....0..0..0..0....0..0..1..0
..0..0..1..1....0..0..0..0....0..0..1..0....0..0..0..1....0..0..1..0
..0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..0..1....0..0..1..0....0..0..0..1....1..0..1..0
..0..0..1..1....0..0..1..1....0..1..1..1....0..0..1..1....0..0..1..1
..1..0..1..1....0..0..1..1....1..0..1..0....0..0..0..1....1..0..1..0
..1..0..1..1....1..1..1..1....0..1..1..1....0..1..1..1....1..1..1..1
CROSSREFS
Sequence in context: A237405 A250443 A017162 * A236828 A236821 A237511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 22 2014
STATUS
approved