login
A250395
Numbers k such that 11410337850553 + 4609098694200*k is prime.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 30, 31, 41, 43, 50, 57, 61, 69, 75, 88, 90, 98, 99, 101, 108, 116, 127, 128, 131, 132, 133, 146, 154, 156, 159, 160, 162, 164, 165, 171, 172, 182, 183, 188, 191, 193, 194, 197
OFFSET
1,3
COMMENTS
Terms up to 21 are consecutive. Arithmetic progression found by Pritchard et al. (1995).
LINKS
Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, Vol. 167, No. 2 (2008), pp. 481-547; arXiv preprint, arXiv:math/0404188 [math.NT], 2004-2007.
Paul A. Pritchard, Andrew Moran and Anthony Thyssen, Twenty-two primes in arithmetic progression, Mathematics of Computation, Vol. 64, No. 211 (1995), pp. 1337-1339.
MATHEMATICA
Select[Range[0, 300], PrimeQ[11410337850553 + 4609098694200 #] &]
PROG
(Magma) [n: n in [0..200] | IsPrime(11410337850553+4609098694200*n)];
(PARI) is(n)=isprime(11410337850553+4609098694200*n) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 21 2014
STATUS
approved