%I #6 Dec 12 2014 20:50:50
%S 2,53,2,164,53,2,485,164,53,2,1046,485,164,53,2,2077,1218,485,164,53,
%T 2,3708,2589,1408,485,164,53,2,6149,4944,3221,1620,485,164,53,2,9610,
%U 8605,6678,3981,1858,485,164,53,2,14441,13814,12377,9026,4877,2126,485,164,53
%N T(n,k)=Number of length n+4 0..k arrays with every five consecutive terms having four times some element equal to the sum of the remaining four
%C Table starts
%C .2.53.164.485.1046..2077..3708...6149...9610...14441...20832...29173...39794
%C .2.53.164.485.1218..2589..4944...8605..13814...21789...32332...46097...63726
%C .2.53.164.485.1408..3221..6678..12377..20572...33877...51568...74947..105310
%C .2.53.164.485.1620..3981..9026..18009..31276...53643...83648..124019..177426
%C .2.53.164.485.1858..4877.12108..26269..48120...85863..137008..207153..301826
%C .2.53.164.485.2126..5917.16048..38149..74540..138277..225550..347407..515094
%C .2.53.164.485.2590..7709.23048..58981.118234..229677..383820..602267..905604
%C .2.53.164.485.3132..9957.33102..91929.190134..384399..656584.1050109.1604176
%C .2.53.164.485.3764.12707.47170.143465.308642..647223.1128230.1838941.2857318
%C .2.53.164.485.4498.16005.66232.222677.503942.1094265.1944918.3228569.5104984
%H R. H. Hardin, <a href="/A249656/b249656.txt">Table of n, a(n) for n = 1..2719</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1)
%F k=3: a(n) = a(n-1)
%F k=4: a(n) = a(n-1)
%F k=5: [order 26]
%F k=6: [order 66]
%F Empirical for row n:
%F n=1: [linear recurrence of order 10; also a polynomial of degree 4 plus a quasipolynomial of degree 0 with period 12]
%F n=2: [order 69]
%e Some solutions for n=6 k=4
%e ..4....1....1....2....1....2....0....4....3....4....3....3....3....1....1....3
%e ..3....0....1....4....1....1....3....2....1....4....0....2....1....3....3....2
%e ..2....2....0....0....3....4....3....1....2....0....0....4....0....1....0....3
%e ..3....4....2....1....3....1....2....3....3....4....1....0....2....3....2....4
%e ..3....3....1....3....2....2....2....0....1....3....1....1....4....2....4....3
%e ..4....1....1....2....1....2....0....4....3....4....3....3....3....1....1....3
%e ..3....0....1....4....1....1....3....2....1....4....0....2....1....3....3....2
%e ..2....2....0....0....3....4....3....1....2....0....0....4....0....1....0....3
%e ..3....4....2....1....3....1....2....3....3....4....1....0....2....3....2....4
%e ..3....3....1....3....2....2....2....0....1....3....1....1....4....2....4....3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 03 2014