login
A248878
Decimal expansion of a_0, a constant related to a cylindrical random walk probability asymptotics.
0
8, 1, 0, 9, 9, 7, 5, 3, 1, 1, 9, 6, 2, 8, 9, 5, 8, 5, 0, 3, 7, 8, 7, 2, 3, 9, 2, 3, 1, 8, 0, 0, 7, 9, 4, 2, 8, 9, 5, 5, 2, 4, 7, 0, 3, 4, 2, 6, 7, 4, 1, 0, 4, 6, 0, 3, 9, 1, 6, 3, 8, 9, 6, 0, 0, 4, 1, 8, 7, 7, 1, 9, 1, 7, 1, 9, 7, 8, 4, 5, 7, 5, 5, 5, 1, 9, 3, 7, 9, 0, 1, 6, 0, 5, 9, 1, 1, 4, 3, 3, 6, 8, 4, 3, 7
OFFSET
0,1
LINKS
Saibal Mitra and Bernard Nienhuis, Osculating Random Walks on Cylinders, arXiv:0708.1763 [math-ph], 2003.
FORMULA
a_0 = (2^(23/72)/3^(5/48))*((Pi^(1/4)*exp((-4^(-1))*zeta'(-1)))/sqrt(Gamma(1/4))).
EXAMPLE
0.810997531196289585037872392318007942895524703426741046...
MATHEMATICA
a0 = 2^(23/72)*(Glaisher*Pi)^(1/4)/(3^(5/48)*E^(1/48)*Sqrt[Gamma[1/4]]); RealDigits[a0, 10, 105] // First
CROSSREFS
Cf. A074962.
Sequence in context: A011437 A021929 A176459 * A168387 A050466 A095893
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved