login
A248684
Decimal expansion of r = sum{(floor(n/4)!)^4/n!, n >= 0}.
4
2, 7, 1, 8, 7, 0, 2, 6, 4, 1, 9, 1, 0, 8, 5, 1, 4, 9, 7, 0, 8, 6, 7, 5, 2, 2, 0, 0, 2, 8, 7, 7, 5, 6, 6, 2, 1, 8, 3, 3, 6, 8, 3, 4, 7, 2, 3, 1, 0, 3, 5, 9, 5, 2, 9, 5, 3, 3, 5, 0, 8, 1, 7, 4, 0, 3, 4, 9, 4, 7, 0, 0, 8, 4, 4, 5, 0, 8, 3, 5, 1, 0, 9, 9, 5, 8
OFFSET
1,1
LINKS
FORMULA
r = sum{(n!^4)*p(4,n)/(4*n + 3)!, n >= 0}, where p(k,n) is defined at A248664.
EXAMPLE
r = 2.718702641910851497086752200287756621...
MATHEMATICA
RealDigits[Sum[(Floor[n/4])!^4/n!, {n, 0, 400}], 10, 111][[1]]
PROG
(PARI) suminf(n=0, ((n\4)!)^4/n!) \\ Michel Marcus, Feb 23 2016
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Oct 11 2014
STATUS
approved