

A248590


Least positive integer m such that prime(m) == 1 (mod m + n).


3



3, 4, 19, 10, 5, 6, 13, 15, 7, 8, 31, 17, 9, 19, 20, 38, 22, 10, 11, 24, 78, 80, 25, 12, 28, 30, 13, 14, 599, 97, 15, 31, 32, 178, 33, 16, 102, 104, 35, 108, 17, 18, 38, 39, 361, 40, 19, 41, 73, 20, 21, 43, 45, 78, 134, 22, 391, 47, 23, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: (i) a(n) exists for any n > 0. Moreover, a(n) < n*(n1) if n > 3.
(ii) For any n > 0, there is a positive integer m such that prime(m) == 1 (mod m + n). Moreover, we may require m < n*(n1) if n > 1.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000


EXAMPLE

a(3) = 19 since prime(19) = 67 == 1 (mod 19 + 3).


MATHEMATICA

Do[m=1; Label[aa]; If[Mod[Prime[m]1, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]


CROSSREFS

Cf. A000040, A247824, A248004, A248588.
Sequence in context: A318419 A263968 A020344 * A143150 A100340 A042175
Adjacent sequences: A248587 A248588 A248589 * A248591 A248592 A248593


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Oct 09 2014


STATUS

approved



