login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248328
Square array read by antidiagonals downwards: super Patalan numbers of order 6.
3
1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
OFFSET
0,2
COMMENTS
Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 6, A025751.
LINKS
Thomas M. Richardson, The Super Patalan Numbers, arXiv:1410.5880 [math.CO], 2014.
Thomas M. Richardson, The Super Patalan Numbers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.3.
FORMULA
T(0,0)=1, T(n,k) = T(n-1,k)*(36*n-6)/(n+k), T(n,k) = T(n,k-1)*(36*k-30)/(n+k).
G.f.: (x/(1-36*x)^(5/6)+y/(1-36*y)^(1/6))/(x+y-36*x*y).
T(n,k) = (-1)^k*36^(n+k)*binomial(n-1/6,n+k).
EXAMPLE
T(0..4,0..4) is
1 6 126 3276 93366
30 90 1260 24570 560196
990 1980 20790 324324 6162156
33660 50490 424116 5513508 89791416
1161270 1393524 9754668 108694872 1548901926
PROG
(PARI) matrix(5, 5, nn, kk, n=nn-1; k=kk-1; (-1)^k*36^(n+k)*binomial(n-1/6, n+k)) \\ Michel Marcus, Oct 09 2014
CROSSREFS
Cf. A068555, A025751, A004993 (first row), A004994 (first column), A004995 (second row), A004996 (second column), A248324, A248325, A248326, A248329, A248332.
Sequence in context: A369819 A073970 A074009 * A366058 A356835 A344344
KEYWORD
nonn,tabl,easy
AUTHOR
Tom Richardson, Oct 04 2014
STATUS
approved