login
Table read by rows: n-th row contains the q successors of n, where q = A007953(n), the digit sum of n in decimal representation.
3

%I #6 Oct 01 2014 20:04:06

%S 2,3,4,4,5,6,5,6,7,8,6,7,8,9,10,7,8,9,10,11,12,8,9,10,11,12,13,14,9,

%T 10,11,12,13,14,15,16,10,11,12,13,14,15,16,17,18,11,12,13,13,14,15,14,

%U 15,16,17,15,16,17,18,19,16,17,18,19,20,21,17,18,19,20

%N Table read by rows: n-th row contains the q successors of n, where q = A007953(n), the digit sum of n in decimal representation.

%C First 9 rows coincide with triangle A108872;

%C T(n,1) = n + 1; T(n,A007953(n)) = n + A007953(n) = A062028(n).

%H Reinhard Zumkeller, <a href="/A248110/b248110.txt">Rows n = 1..1000 of triangle, flattened</a>

%e . n | T(n,*) | A007953(n)

%e . ---+------------------------------------------+-----------

%e . 1 | 2 | 1

%e . 2 | 3, 4 | 2

%e . 3 | 4, 5, 6 | 3

%e . 4 | 5, 6, 7, 8 | 4

%e . 5 | 6, 7, 8, 9, 10 | 5

%e . 6 | 7, 8, 9, 10, 11, 12 | 6

%e . 7 | 8, 9, 10, 11, 12, 13, 14 | 7

%e . 8 | 9, 10, 11, 12, 13, 14, 15, 16 | 8

%e . 9 | 10, 11, 12, 13, 14, 15, 16, 17, 18 | 9

%e . 10 | 11 | 1

%e . 11 | 12, 13 | 2

%e . 12 | 13, 14, 15 | 3

%e . 13 | 14, 15, 16, 17 | 4

%e . 14 | 15, 16, 17, 18, 19 | 5

%e . 15 | 16, 17, 18, 19, 20, 21 | 6

%e . 16 | 17, 18, 19, 20, 21, 22, 23 | 7

%e . 17 | 18, 19, 20, 21, 22, 23, 24, 25 | 8

%e . 18 | 19, 20, 21, 22, 23, 24, 25, 26, 27 | 9

%e . 19 | 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | 10

%e . 20 | 21, 22 | 2

%o (Haskell)

%o a248110 n k = a248110_tabf !! (n-1) !! (k-1)

%o a248110_row n = a248110_tabf !! (n-1)

%o a248110_tabf = map (\x -> [x + 1 .. x + a007953 x]) [1 ..]

%Y Cf. A007953 (row lengths), A062028, A108872.

%K nonn,base,tabf

%O 1,1

%A _Reinhard Zumkeller_, Oct 01 2014