login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247893
Least integer k > 0 such that prime(k) - k*n is a square.
2
1, 1, 12, 35, 75, 181, 490, 1061, 2707, 6459, 15932, 40127, 100362, 251711, 637236, 1617181, 4124444, 10553419, 27066987, 69709706, 179992917, 465769804, 1208198534, 3140421726, 8179002096, 21338685437, 55762149044, 145935689364, 382465573484, 1003652347334
OFFSET
1,3
COMMENTS
Conjecture: a(n) exists for any n > 0.
See also A247278 for a related conjecture.
LINKS
Zhi-Wei Sun, A new theorem on the prime-counting function, Ramanujan J. 42 (2017), no.1, 59-67. (Cf. Conjecture 4.1.)
EXAMPLE
a(3) = 12 with prime(12) - 12*3 = 37 - 36 = 1^2.
a(21) = 179992917 with prime(179992917) - 179992917*21 = 3779851261 - 179992917*21 = 2^2.
a(22) = 465769804 with prime(465769804) - 465769804*22 = 10246935737 - 465769804*22 = 7^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
Do[k=1; Label[aa]; If[SQ[Prime[k]-k*n], Print[n, " ", k]; Goto[bb]]; k=k+1; Goto[aa]; Label[bb]; Continue, {n, 1, 18}]
lik[n_]:=Module[{k=1}, While[!IntegerQ[Sqrt[Prime[k]-k*n]], k++]; k]; Array[lik, 20] (* Harvey P. Dale, May 11 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 27 2014
EXTENSIONS
a(21)-a(22) from Zhi-Wei Sun, Apr 21 2020
Terms a(23) and beyond from Giovanni Resta, Apr 22 2020
STATUS
approved