OFFSET
1,3
COMMENTS
Conjecture: a(n) exists for any n > 0.
See also A247278 for a related conjecture.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..50
Zhi-Wei Sun, A new theorem on the prime-counting function, Ramanujan J. 42 (2017), no.1, 59-67. (Cf. Conjecture 4.1.)
EXAMPLE
a(3) = 12 with prime(12) - 12*3 = 37 - 36 = 1^2.
a(21) = 179992917 with prime(179992917) - 179992917*21 = 3779851261 - 179992917*21 = 2^2.
a(22) = 465769804 with prime(465769804) - 465769804*22 = 10246935737 - 465769804*22 = 7^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
Do[k=1; Label[aa]; If[SQ[Prime[k]-k*n], Print[n, " ", k]; Goto[bb]]; k=k+1; Goto[aa]; Label[bb]; Continue, {n, 1, 18}]
lik[n_]:=Module[{k=1}, While[!IntegerQ[Sqrt[Prime[k]-k*n]], k++]; k]; Array[lik, 20] (* Harvey P. Dale, May 11 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 27 2014
EXTENSIONS
a(21)-a(22) from Zhi-Wei Sun, Apr 21 2020
Terms a(23) and beyond from Giovanni Resta, Apr 22 2020
STATUS
approved