login
A247728
Number of length 2+3 0..n arrays with no disjoint pairs in any consecutive four terms having the same sum
1
8, 90, 456, 1592, 4344, 10098, 20816, 39264, 69000, 114650, 181848, 277560, 409976, 588882, 825504, 1132928, 1525896, 2021274, 2637800, 3396600, 4320888, 5436530, 6771696, 8357472, 10227464, 12418458, 14969976, 17924984, 21329400, 25232850
OFFSET
1,1
COMMENTS
Row 2 of A247726
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -4*a(n-2) -4*a(n-3) +10*a(n-4) -4*a(n-5) -4*a(n-6) +4*a(n-7) -a(n-8)
Empirical for n mod 2 = 0: a(n) = 1*n^5 + 1*n^4 + (9/2)*n^3 + (3/2)*n^2
Empirical for n mod 2 = 1: a(n) = 1*n^5 + 1*n^4 + (9/2)*n^3 + (3/2)*n^2 - (3/2)*n + (3/2).
Empirical G.f.: 2*x*(4+29*x+64*x^2+80*x^3+40*x^4+23*x^5) / ( (1+x)^2*(x-1)^6 ). - R. J. Mathar, Sep 23 2014
EXAMPLE
Some solutions for n=6
..6....5....2....0....1....3....1....1....6....3....6....3....0....6....6....4
..3....3....3....4....3....4....2....0....6....6....5....3....5....4....4....2
..2....3....0....0....1....1....2....6....6....1....0....2....1....0....0....6
..4....6....3....0....0....1....5....4....5....1....2....6....3....0....0....3
..2....5....3....1....0....3....2....0....2....2....0....6....4....1....5....4
CROSSREFS
Sequence in context: A371208 A077192 A128304 * A056784 A166769 A323960
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2014
STATUS
approved