%I #11 Dec 14 2014 08:08:29
%S 1,1,1,2,3,2,4,10,12,6,9,33,62,60,24,21,111,300,450,360,120,51,378,
%T 1412,3000,3720,2520,720,127,1303,6552,18816,32760,34440,20160,5040,
%U 323,4539,30186,113820,264264,388080,352800,181440,40320
%N Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).
%F Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
%F sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
%F T(n, 0) = A001006(n) (Motzkin numbers).
%F T(n, n) = A000142(n) = n!.
%F T(n, 1) = A058987(n+1) for n>=1.
%F T(n,n-1)= A001710(n+1) for n>=1.
%e Triangle starts:
%e [ 1],
%e [ 1, 1],
%e [ 2, 3, 2],
%e [ 4, 10, 12, 6],
%e [ 9, 33, 62, 60, 24],
%e [ 21, 111, 300, 450, 360, 120],
%e [ 51, 378, 1412, 3000, 3720, 2520, 720],
%e [127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
%e .
%e [n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
%e [n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
%p A247497_row := proc(n) local A, M, p;
%p A := (n,k) -> `if`(type(n-k, odd),0,n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
%p M := (k,x) -> add(A(k,j)*x^j,j=0..k): # Motzkin polynomial
%p p := expand(sum(x^k*M(n,k),k=0..infinity));
%p [seq((-1)^(n+1)*coeff(convert(p,parfrac),(x-1)^(-j)),j=1..n+1)] end:
%p seq(print(A247497_row(n)),n=0..7);
%Y Cf. A247495, A097610, A001006, A058987, A001710.
%K nonn,tabl
%O 0,4
%A _Peter Luschny_, Dec 13 2014