login
Number of paths from (0,0,0) to (n,n,n) avoiding 3 or more consecutive right steps, 3 or more consecutive up steps, and 3 or more consecutive away steps.
1

%I #42 Sep 08 2019 02:05:47

%S 1,6,90,1314,21084,353772,6128208,108606408,1958248980,35787633828,

%T 661145207064,12322983505860,231395387482470,4372431546366636,

%U 83068148270734740,1585548331063624992,30388252830928088010,584527926996090202428,11279880522021539956860

%N Number of paths from (0,0,0) to (n,n,n) avoiding 3 or more consecutive right steps, 3 or more consecutive up steps, and 3 or more consecutive away steps.

%C This is a generalization of A177790 from 2D to 3D.

%C a(n) is also the number of ternary vectors (symbols 0, 1, and 2, for example) that can be composed with 3n elements (same number of each of the symbols) where each symbol cannot be repeated more than twice consecutively. For example, 0,2,1,0,2,2,1,0,1 is allowed, but 0,2,1,1,1,2,2,0,0 is prohibited because the symbol 1 is repeated 3 times.

%H Alois P. Heinz, <a href="/A247150/b247150.txt">Table of n, a(n) for n = 0..250</a>

%H M. Erickson, S. Fernando, K. Tran, <a href="https://www.semanticscholar.org/paper/Enumerating-Rook-and-Queen-Paths-Erickson-Fernando/fc8d32756ec73ccae8b28ad93431c13c571c6f10">Enumerating rook and queen paths</a>, Bulletin of the Institute for Combinatorics and Its Applications, Volume 60 (2010), 37-48.

%F a(n) = [x^n y^n z^n] ((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y)-x*z*(1+x)*(1+z)-y*z*(1+y)*(1+z)-2*x*y*z*(1+x)*(1+y)*(1+z))).

%F Recurrence (20 terms):

%F a(p,q,r) = a(p-1,q-1,r) +a(p-1,q-2,r) +a(p-2,q-1,r) +a(p-2,q-2,r) +2*a(p-1,q-1,r-1) +a(p,q-2,r-1) +2*a(p-1,q-2,r-1) +a(p-1,q,r-1) +2*a(p-2,q-1,r-1) +a(p-2,q,r-1) +2*a(p-2,q-2,r-1) +a(p,q-1,r-1) +2*a(p-2,q-2,r-2) +a(p,q-1,r-2) +2*a(p-1,q-1,r-2) +a(p,q-2,r-2) +2*a(p-1,q-2,r-2) +a(p-1,q,r-2) +2*a(p-2,q-1,r-2) +a(p-2,q,r-2), for (p,q,r) > 2.

%F a(p,q,r) = 0 when p or q or r is negative.

%F Initial conditions: a(0,0,0) = 1, a(1,0,0) = 1, a(1,1,0) = 2, a(1,1,1) = 6, a(2,0,0) = 1, a(2,1,0) = 3, a(2,1,1) = 12, a(2,2,0) = 6, a(2,2,1) = 30, a(2,2,2) = 90.

%F Symmetry: a(p,q,r) = a(p,r,q) = a(q,p,r) = a(q,r,p) = a(r,p,q) = a(r,q,p).

%e For n=1 the 6 paths are (000>001>011>111), (000>001>101>111), (000>010>011>111), (000>010>110>111), (000>100>101>111), (000>100>110>111).

%p f:= proc(p,q,r) option remember;

%p if p<q or q < r then return procname(op(sort([p,q,r],`>`))) fi;

%p if r < 0 then return 0 fi;

%p procname(p-1,q-1,r)+procname(p-1,q-2,r)+procname(p-2,q-1,r)+procname(p-2,q-2,r)+2*procname(p-1,q-1,r-1)+procname(p,q-2,r-1)+2*procname(p-1,q-2,r-1)+procname(p-1,q,r-1)+2*procname(p-2,q-1,r-1)+procname(p-2,q,r-1)+2*procname(p-2,q-2,r-1)+procname(p,q-1,r-1)+2*procname(p-2,q-2,r-2)+procname(p,q-1,r-2)+2*procname(p-1,q-1,r-2)+procname(p,q-2,r-2)+2*procname(p-1,q-2,r-2)+procname(p-1,q,r-2)+2*procname(p-2,q-1,r-2)+procname(p-2,q,r-2)

%p end proc:

%p f(0,0,0) := 1: f(1,0,0) := 1:

%p f(1,1,0) := 2: f(1,1,1) := 6:

%p f(2,0,0) := 1: f(2,1,0) := 3:

%p f(2,1,1) := 12: f(2,2,0) := 6:

%p f(2,2,1) := 30: f(2,2,2) := 90:

%p seq(f(n,n,n), n=0..30); # _Robert Israel_, Nov 26 2014

%p # second Maple program:

%p b:= proc(i, j, k, t) option remember; `if`(max(i, j, k)=0, 1,

%p `if`(j>0, b(j-1, `if`(i<k, [i, k], [k, i])[], 1), 0)+

%p `if`(k>0, b(k-1, `if`(i<j, [i, j], [j, i])[], 1), 0)+

%p `if`(i>0 and t>0, b(i-1, j, k, t-1), 0))

%p end:

%p a:= n-> b(n$3, 2):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 26 2014

%t (* Very slow *) a[0] = 1; a[n_] := SeriesCoefficient[((1+x+x^2)*(1+y+y^2)*(1+z+z^2)/(1-x*y*(1+x)*(1+y) - x*z*(1+x)*(1+ z) - y*z*(1+y)*(1+z) - 2*x*y*z*(1+x)*(1+y)*(1+z))), {x, 0, n}, {y, 0, n}, {z, 0, n}]; Table[Print[an = a[n]]; an, {n, 0, 10}] (* _Jean-François Alcover_, Nov 26 2014 *)

%t b[i_, j_, k_, t_] := b[i, j, k, t] = If[Max[i, j, k] == 0, 1, If[j>0, If[i<k, b[j-1, i, k, 1], b[j-1, k, i, 1]], 0] + If[k>0, If[i<j, b[k-1, i, j, 1], b[k-1, i, j, 1]], 0] + If[i>0 && t>0, b[i-1, j, k, t-1], 0]]; a[n_] := b[n, n, n, 2]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 27 2014, after _Alois P. Heinz_ *)

%Y Cf. A177790.

%K nonn

%O 0,2

%A _Jean-Pierre Levrel_, Nov 21 2014