%I #25 Jul 29 2020 03:20:09
%S 1,8,1,1,4,4,7,3,2,8,5,2,7,8,1,3,3,4,3,1,8,8,3,4,5,7,4,6,4,3,0,2,0,6,
%T 3,7,5,4,0,0,8,9,1,7,6,2,5,1,5,8,7,4,7,1,0,2,3,7,4,1,6,2,6,2,7,6,8,8,
%U 4,4,9,3,4,6,2,7,1,2,5,6,7,3,9,0,9,5,2,8,7,8,7,7,8,2,0,7,1,5,5,7,4,4,5
%N Decimal expansion of Hermite's constant gamma_7 = 2^(6/7).
%C Also seventh root of 64. - _Alonso del Arte_, Feb 07 2015
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.7 Hermite's Constants, p. 507.
%H Chai Wah Wu, <a href="/A246722/b246722.txt">Table of n, a(n) for n = 1..10000</a>
%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, p. 62.
%F Equals Product_{k>=0} (1 + (-1)^k/(7*k + 1)). - _Amiram Eldar_, Jul 29 2020
%e 1.81144732852781334318834574643020637540089176251587471...
%t RealDigits[2^(6/7), 10, 103] // First
%o (PARI) sqrtn(64, 7) \\ _Michel Marcus_, Feb 08 2015
%Y Cf. A222071 (Hermite's delta_7), A011149, A005480.
%K nonn,cons,easy
%O 1,2
%A _Jean-François Alcover_, Sep 02 2014