login
A246307
Numerator of Z^(2)(n), where Z^(2)(n) = n for n=0,1; thereafter Z^(2)(n) = (1/3)*Sum_{k=1..n-1} Stirling_2(n,k)*Z^(2)(k).
0
0, 1, 1, 5, 6, 399, 10137, 364737, 2206077, 276269667, 21732613641, 2097942773859, 60958311638283, 16792338947372883, 2704712327221326273, 503673752669173980741, 6711263837756846638875, 3248087145389524173611367, 885435154962504420364992693, 270090359296255369532260168299
OFFSET
0,4
COMMENTS
The denominators are various powers of 2.
LINKS
D. Barsky, J.-P. Bézivin, p-adic Properties of Lengyel's Numbers, Journal of Integer Sequences, 17 (2014), #14.7.3.
EXAMPLE
The sequence Z^(2)(n) begins 0, 1, 1/2, 5/4, 6, 399/8, 10137/16, 364737/32, 2206077/8, 276269667/32, 21732613641/64, 2097942773859/128, 60958311638283/64, 16792338947372883/256, 2704712327221326273/512,...
MAPLE
Z:=proc(n, p) option remember; local k; if n <= 1 then n else add(stirling2(n, k)*Z(k, p)/(p-1), k=1..n-1); fi; end;
t1:=[seq(Z(n, 2), n=0..35)];
CROSSREFS
Cf. A005121.
Sequence in context: A007666 A064177 A042721 * A269588 A048658 A001111
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 22 2014
STATUS
approved