login
A246000
Number of length 5+2 0..n arrays with no pair in any consecutive three terms totalling exactly n
1
2, 38, 956, 7132, 40590, 153906, 496088, 1319480, 3178490, 6857470, 13855572, 26075028, 46848326, 80108042, 132346160, 210837616, 327085938, 493492950, 729039980, 1053585740, 1496758142, 2088821218, 2874009096, 3896630952
OFFSET
1,1
COMMENTS
Row 5 of A245995
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +2*a(n-2) -14*a(n-3) +5*a(n-4) +25*a(n-5) -20*a(n-6) -20*a(n-7) +25*a(n-8) +5*a(n-9) -14*a(n-10) +2*a(n-11) +3*a(n-12) -a(n-13)
EXAMPLE
Some solutions for n=6
..4....4....0....2....1....0....3....3....0....4....1....0....3....3....4....4
..5....6....2....2....1....0....1....5....5....5....3....2....4....6....4....5
..6....5....1....5....2....0....1....5....5....0....4....0....1....4....4....4
..4....3....1....0....1....5....6....5....0....2....6....0....3....4....4....3
..6....5....1....2....1....2....3....5....4....5....3....0....4....0....1....1
..4....0....4....0....4....3....1....3....0....6....5....5....0....1....3....4
..3....2....6....1....3....6....4....2....5....6....5....3....5....4....2....4
CROSSREFS
Sequence in context: A208240 A075796 A230903 * A266601 A266597 A291821
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 09 2014
STATUS
approved