login
A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12

%I #19 Jan 27 2023 20:49:56

%S 1,1,1,1,1,3,1,1,4,10,1,1,6,27,35,1,1,10,93,256,126,1,1,18,381,2716,

%T 3125,462,1,1,34,1785,36628,127905,46656,1716,1,1,66,9237,591460,

%U 7120505,8848236,823543,6435,1,1,130,51033,11007556,495872505,2443835736,844691407,16777216,24310

%N A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A245397/b245397.txt">Antidiagonals n = 0..50, flattened</a>

%F A(n,k) = [x^n] (n!)^k * (Sum_{j=0..n} x^j/(j!)^k)^n.

%e A(3,2) = 93: (z1+z2+z3)^3 = z1^3 +3*z1^2*z2 +3*z1^2*z3 +3*z1*z2^2 +6*z1*z2*z3 +3*z1*z3^2 +z2^3 +3*z2^2*z3 +3*z2*z3^2 +z3^3 => 1^2+3^2+3^2+3^2+6^2+3^2+1^2+3^2+3^2+1^2 = 93.

%e Square array A(n,k) begins:

%e 0 : 1, 1, 1, 1, 1, 1, ...

%e 1 : 1, 1, 1, 1, 1, 1, ...

%e 2 : 3, 4, 6, 10, 18, 34, ...

%e 3 : 10, 27, 93, 381, 1785, 9237, ...

%e 4 : 35, 256, 2716, 36628, 591460, 11007556, ...

%e 5 : 126, 3125, 127905, 7120505, 495872505, 41262262505, ...

%p b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,

%p add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))

%p end:

%p A:= (n, k)-> b(n$2, k):

%p seq(seq(A(n, d-n), n=0..d), d=0..10);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] * Binomial[n, j]^(k-1)/j!, {j, 0, n}]]]; A[n_, k_] := n!*b[n, n, k]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Jan 30 2015, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A001700(n-1) for n>0, A000312, A033935, A055733, A055740, A246240, A246241, A246242, A246243, A246244, A246245.

%Y Rows n=0+1, 2 give: A000012, A052548.

%Y Main diagonal gives A245398.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Jul 21 2014